
Unity	Module	for	Deig	
Henrik	Engström	

Version	1.0,	2024-08-27	
	
First	 of	 all,	 the	 Unity	 module	 for	 Deig	 is	 highly	 customized	 to	 support	 a	
production	 process	where	 the	 game	 logic	 is	modeled	 in	 Deig.	 Unity	 is	 used	 to	
create	production	quality	assets	with	animations,	graphics,	audio	etc.	The	game	
logic	 is	 not	 modeled	 in	 Unity.	 Moreover,	 in	 the	 typical	 case,	 scenes	 are	 not	
created	 in	Unity	at	 all.	All	 editing	 is	done	on	prefabs	 that	are	 loaded	when	 the	
game	is	started.		
	
The	association	between	Deig	entities	and	Unity	prefabs	is	handled	by	Scriptable	
Objects.	 	 If	 an	 entity	 has	 not	 been	 assigned	 a	 prefab,	 the	 system	will	 create	 a	
prototyping	asset	 that	will	use	 the	same	 texture/audio	 that	 is	used	 in	 the	Deig	
editor.	 This	 approach	 makes	 it	 possible	 to	 gradually	 replace	 the	 prototyping	
assets	with	proper	prefabs.	Changes	to	the	game	logic	can	be	made	and	tested	in	
parallel	 with	 the	 work	 with	 prefabs	 in	 Unity.	 Figure	 1	 shows	 the	 production	
pipeline	that	has	been	used	for	Deig	games.	
	
	

	
Figure	1.	Deig	game	production	pipeline.	

Setup
Follow	these	steps	to	connect	a	Deig	game	with	a	unity	project:	

• Install	the	Deig	editor	from	http://deig.se.	
• Create	a	new	Unity	project.	Make	sure	 it	 is	 configured	as	2D	 (if	not,	 the	

importing	of	textures	will	fail)	
• Install	the	DeigCore	package.		
• Open	 the	 Deig	 editor	 and	 select	 the	 menu	 item:		

Utils->Select Unity catalog.		
• Browse	to	the	location	of	your	unity	project	and	select	the	root	folder	of	it.	
• Export	 the	 game	 from	 Deig	 to	 Unity	 by	 selecting	 the	 menu	 item:		

Utils->Export whole game to unity.	
• Switch	 to	 unity	 and	 open	 the	 Deig	 assignment	 window:	

	Deig->Assignment window	
• Click	 the	 "Deig	 Settings"	 button	 (top	 left	 in	 Figure	2).	 This	will	 open	 an	

inspector	where	you	can	select	the	active	game.	
• Click	"Run"	(or	chose	the	menu	item	Deig->Run).	You	will	now	be	able	to	

play	 the	 game	 using	 the	 prototyping	 assets	 (the	 same	 used	 in	 the	 Deig	
editor).	To	improve	the	game	you	can	replace	the	prototyping	assets	with	
Unity	prefabs.	

	
Note	 that	 the	 development	 of	 the	 game	 can	 happen	 concurrently	 in	 the	 Deig	
editor	and	in	Unity.	If	changes	are	made	to	the	dialog	or	game	logic	in	Deig	they	
can	 be	 exported	 to	 Unity.	 The	 associations	 to	 prefab	 elements	 are	 stored	 in	
scriptable	objects	in	Unity	and	will	be	maintained	when	the	game	levels	change.	
If	new	elements	are	introduced,	prefabs	will	obviously	have	to	be	added.			

Running the game
A	 game	 can	 be	 started	 by	 pressing	 the	 "run"-button,	 in	 the	 Deig	 assignment	
window	 (Figure	 2).	 This	 will	 load	 the	 scene	 Load	 (without	 saving	 any	 open	
scenes	so	beware).	The	Load	scene	will	then	load	the	scene	Game	which	contains	
all	 components	 needed	 to	 run	 a	 Deig	 game.	 The	 entities	 of	 the	 game	 will	 be	
loaded	according	to	the	specifications	from	the	Deig	editor	(stored	in	XML	files).	
The	prefabs	are	 loaded	based	on	the	assignments	made	 in	scriptable	objects.	 If	
an	assignment	is	missing	it	will	load	a	"prototyping"	version	of	the	prefab	which	
more	or	less	is	the	asset	used	in	the	Deig	editor.		
	
It	 is	 possible	 to	 run	 and	 build	 a	 Deig	 game	 without	 any	 additional	 editing	 in	
Unity.	

Deig Assignment Window
The	Deig	assignment	window	 is	 the	hub	 for	making	associations	between	Deig	
entities	 (locations,	 characters,	 audio	 etc.)	 and	 prefabs	 (Figure	 2).	 Associations	
are	made	on	a	game,	chapter	or	location	level.	
	

	
Figure	2.	The	upper	part	of	the	Deig	assignment	window	in	Unity.	

	
The	most	complex	case	is	the	associations	made	for	locations.	A	location	has	a	
prefab	for	the	background	environment	(the	graphics,	ambience	audio	etc.)	and	
prefabs	for	each	interactable	(one	for	the	audio	and	one	for	the	graphics).	
Position	of	interactables	can	be	adjusted	in	Unity	to	enable	a	fine-grained	control	
of	its	position	(e.g.	pixel-perfect	alignment	with	the	background).	The	location	
prefab	will	store	the	offset	of	images,	audio	and	the	interaction	zone	–	for	each	
interactable.	This	means	that	the	interactable	should	not	be	moved	in	the	Deig	
editor	once	the	Unity	editing	has	started.		
	

Using scriptable objects to create prefabs

Configuring Locations
It	 is	possible	to	access	all	scriptable	objects	 from	the	Deig	assignment	window.		
Each	 location	has	 a	 section	 (Figure	3),	which	 shows	 the	 elements	 involved.	To	
edit	this	location,	the	button	to	the	left	can	be	clicked	(to	generate	or	select	the	
associated	scriptable	object).	

	
Figure	3.	A	section	of	the	Deig	assignment	window	where	a	location	is	

presented.	

Location
When	the	scriptable	object	has	been	created	(or	selected)	the	inspector	shows	a	
panel	 with	 a	 reference	 to	 the	 location	 prefab	 (Figure	 4)	 and	 all	 involved	
interactables	(Figure	6).	It	is	possible	to	create	a	preview	scene	of	the	location	by	
clicking	the	button	at	the	bottom	of	Figure	4.	
	

	
Figure	4.	The	upper	part	of	the	inspector	for	a	location	scriptable	object.	

	
	
A	 location	 prefab	 (Figure	 5)	 contains	 the	 background	 image	 (Location_ENV),	
ambience	audio	(Roomtone_AMB)	and	other	non-interactable	properties.	
	

	
Figure	5.	The	elements	of	the	location	prefab.	

	

Interactables
The	interactables	in	a	location	will	have	their	own	prefabs	that	can	be	accessed	
from	the	scriptable	object	for	the	location	(Figure	6).	
	

	
Figure	6.	The	middle	part	of	the	location	scriptable	object	where	interactables	

are	assigned.	
	
For	each	interactable,	there	will	be	one	prefab	for	the	audio	and	one	prefab	for	
the	visual	representation.	The	scale	and	position	of	these	prefabs	can	be	adjusted	
in	the	inspector	or	it	can	be	adjusted	in	the	preview	scene.	The	interaction	zone	
has	an	offset	that	can	be	changed	in	the	same	way.	Note	that	the	interaction	zone	
prefab	 is	 shared	 between	 all	 interactables.	 For	 this	 reason	 there	 is	 no	 Prefab
Reference	for	the	zone.	It	can	also	not	be	rescaled	(the	activation	zone	should	be	
the	same	for	all	interactables).	

Animations and Location audio
Animations	and	positioned	audio	are	assigned	in	the	bottom	part	of	the	location	
scriptable	object	(Figure	7).	

	
Figure	7.	The	bottom	part	of	the	location	scriptable	object	where	location	audio	

and	animations	are	assigned.	

Preview Scene
When	 the	 preview	 button	 in	 Figure	 4	 is	 pressed,	 a	 scene	with	 that	 location	 is	
created	(Figure	8).	As	can	be	seen,	all	prefabs	are	instantiated	and	placed	in	the	
hierarchy.	The	Dummy	object	 is	 used	 to	 enable	 testing	 the	 location	with	 some	
dummy	 functions.	 By	 pressing	 the	 play	 button	 it	 is	 possible	 to	 inspect	 the	
location	and	 listen	 to	ambience	etc.	The	 logic	of	 the	game	will	however	not	be	
run.		

	
Figure	8.	The	preview	scene	for	a	location	(Hall)	

	
The	prefabs	 for	 interactables,	 location	audio	and	animations	can	be	scaled	and	
repositioned.	 Note	 that	 these	 changes	 should	 not	 be	 applied	 directly	 to	 the	
prefab.	 Instead	 you	 should	 use	 the	 save	 button	 that	 appears	 in	 the	 inspector	
(Figure	9).	
	

	
Figure	9.	The	inspector	for	a	relocated	prefab.	Note	that	the	save	button	should	

be	used	instead	of	applying	changes	to	a	prefab.	
	
If	changes	are	applied	to	the	prefab,	this	will	cause	problems	when	prefabs	are	
shared	(se	below).	
	
Note	 that	when	 an	 entity	 has	 not	 yet	 got	 an	 assigned	 prefab,	 the	 preview	will	
load	a	prototyping	version.	This	will	have	"(autoassigned)"	added	to	its	name	in	
the	 scene	 hierarchy.	 It	 is	 not	 possible	 to	 adjust	 positions	 of	 such	 prototyping	
prefabs.	

Configuring other entities
The	 locations	are	the	most	complex	entity	to	configure.	 In	addition,	 there	are	a	
number	of	entities	 that	has	a	more	straightforward	association	 from	their	Deig	
name	to	a	prefab.	These	are	presented	below.	

Characters
The	 characters	 that	 are	 shown	when	 a	 dialog	 is	 presented	 are	 assigned	 in	 the	
window	shown	in	figure	10.	
	

	
Figure	10.	Character	association	for	a	chapter.	

	
A	 character	 prefab	 has	 an	 animation	 controller	 which	 handles	 the	 different	
emotions	that	are	flagged	in	the	dialog	editor	(in	Deig).	

Audio
There	 is	a	difference	between	 location	audio	(has	a	position)	and	chapter	audio	
(is	 location	 independent).	 Chapter	 audio	 is	 assigned	 by	 clicking	 on	 the	middle	
button	 in	Figure	2	 (below	chapter	 selection).	 Location	audio	 is	 assigned	 in	 the	
Location	scriptable	object	(Figure	7).	
	
Transit	audio	is	assigned	for	each	door.	This	is	done	for	all	transits	in	the	game.	
Note	 that	 it	 is	 possible	 to	 have	 different	 sounds	 for	 each	 direction	 between	
locations	(one	sound	when	you	go	from	A	to	B	and	another	when	you	go	from	B	
to	A).		
	
Note	1:	 The	 Deig	 Unity	 package	 has	 a	 component	 AudioRandom	 that	 is	 used	 to	
play	audio.	This	means	audio	 files	are	not	assigned	directly	 to	an	audio	source	
but	 are	 added	 to	 the	 list	 in	 the	AudioRandom	 class.	 This	 class	 randomly	 selects	
sounds	 to	 be	 played	which	 enables	 a	more	 rich	 experience.	 If	 only	 one	 file	 is	
added	the	behavior	will	be	the	same	as	a	traditional	audio	source.	
	
Note	2:	Prefabs	for	audio	has	an	animation	that	is	played.	This	can	be	replaced	to	
visualize	the	sound	to	players	who	cannot	hear	the	sound	or	has	disabled	it.	

Music
Music	 is	associated	 for	 the	chapter.	A	music	prefab	contains	audio	clip	and	has	
some	controls	for	fade	time	etc.		

Custom Functions
Custom	 functions	 are	 handled	 by	 a	 prefab	 that	 has	 a	 custom	 function	 script	
component.	 The	 Deig	 package	 contains	 an	 example	 script	 that	 illustrates	 how	
this	can	be	handled	(TestFunction.cs).	

Variable Subscribers
Variable	subscribers	is	a	way	to	add	behavior	to	Unity	objects	that	is	controlled	
by	 changes	 to	 Deig	 Boolean	 variables.	 By	 adding	 a	 variable	 subscriber	
component	 to	 a	 game	 object	 it	 will	 receive	 notifications	 from	 the	 Deig	 engine	
when	that	variable	is	changed.	Two	types	of	subscribers	are	pre-defined	that	will	
enable	or	disable	a	game	object	if	the	variable	is	true	or	false	respectively.	Other	
types	of	subscribers	can	be	added.	
	
The	 variable	 subscriber	 inspector	 (Figure	 11)	 can	 be	 used	 to	 find	 and	 remove	
subscribers.	Note	that	this	panel	is	looking	at	all	prefabs	in	the	project	–	not	only	
for	the	selected	game.	
	

	
Figure	11.	The	variable	subscriber	inspector.	

Dialog
Dialog	 lines	are	not	associated	with	 scriptable	objects.	They	are	always	 loaded	
from	a	Resource	folder.	The	prototyping	dialog	is	taken	from:	
Assets/Deig/Resources/PrototypingAssets/<gamename>/Audio/Voice

	
The	final	dialog	audio	is	taken	from:		
Assets/Deig/Resources/Games Prefab Association/<gamename>/Audio/Voice
	
When	voice	acting	has	been	recorded	it	should	be	placed	in	the	latter	folder.	

What is loaded from a Resource-folder?
All	prototyping	assets	are	 loaded	from	the	resource	 folder.	This	should	only	be	
used	during	development.	
	
All	scriptable	objects	are	loaded	from	a	resource	folder.	They	contain	references	
to	prefabs.	These	prefabs	do	not	have	to	be	located	in	a	resource	folder.	
	
Note:	 if	 you	want	 to	use	 the	prototyping	 (TTS)	 files	 in	 the	 final	 game,	 you	 can	
move	the	Voice	folder	from	PrototypingAssets to	Games Prefab Association.	
When	the	final	game	is	built	the	remaining	files	in	the	prototyping	folder	should	
be	deleted	(in	order	to	reduce	the	size	of	the	built	game).	

The structure of prefabs
Prefabs	 can	 be	 created	 for	 each	 instance	 in	 the	 game	 (e.g.	 for	 each	 location	 in	
each	chapter)	but	they	can	also	be	shared	by	placing	them	on	a	chapter-	or	game-
level.	 If,	 for	 example,	 the	 same	 location	 is	 used	 in	 several	 chapters	 then	 it	 is	
possible	 to	 use	 the	 same	 prefab	 for	 all	 chapters.	 The	 idea	 is	 that	 it	 should	 be	
possible	to	create	special	versions	of	e.g.	a	location	in	one	chapter	but	that	other	
chapters	can	use	one	prefab	that	they	share.	
	
Note	 that	 the	 Unity	 inspector	 (for	 scriptable	 objects)	 have	 "sync"-buttons	 that	
associates	 a	 Deig	 objects	 with	 prefabs.	 These	 buttons	 starts	 at	 the	 most	 local	
level	 and	 looks	 for	 prefabs	 with	 the	 corresponding	 name.	 If	 you	 want	 to	 use	
another	 prefab,	 the	 association	 can	 be	 changed	 by	 dragging	 the	 prefab	 to	 the	
associated	field	(prefab	reference).	
	

The	scriptable	object	inspectors	will	show	which	level	an	associated	prefab	is	at.	
The	following	levels	exists:	

• GlobalGame	-		prefabs	shared	in	all	chapters	of	the	game.	
• LocalChapter	-	prefabs	shared	in	a	chapter.	These	are	located	in	a	folder	

that	has	the	chapter	name.	
• LocalLocation	 -	 prefabs	 that	 are	 unique	 to	 a	 location	 (in	 a	 chapter).	

These	are	located	in	a	folder	that	has	the	location	name	(which	in	turn	is	
located	in	a	folder	with	the	chapter	name)	

• Custom	 -	 the	 scriptable	object	 is	 associated	with	a	prefab	 that	 is	 located	
outside	the	default	hierarchy.	

• Missing	-	no	prefab	is	assigned	or	the	assigned	prefab	cannot	be	located.	
	
When	the	sync-button	is	pressed	in	an	association	(e.g.	in	Figure	10),	the	system	
will	start	to	search	at	the	most	local	level,	and	move	upwards.	If	a	fitting	prefab	is	
found,	 it	 will	 be	 used.	 It	 is	 possible	 to	 drag-and-drop	 prefabs	 that	 are	 located	
outside	the	defined	hierarchy.	In	this	case	the	prefab	will	be	flagged	as	"Other"	in	
the	inspector.	

Example
If	 the	Main	character	prefab	should	be	used	 for	all	 chapters.	You	can	move	 the	
folder:	
 Assets/Deig/Games/<gamename>/Characters/C01/Main

to:	
 Assets/Deig/Games/<gamename>/Characters/Main

	
Then	you	will	only	have	to	press	"sync"	in	the	character	scriptable	object	in	each	
chapter	of	the	game.		

Deig Settings Scriptable Objects
There	are	 some	scriptable	objects	 that	are	global	 to	 the	Deig	environment	and	
used	for	all	games.	They	are	accessible	from	the	Deig	Settings	(Figure	12)	
	

	
Figure	12.	The	global	Deig	settings	scriptable	object	inspector.	

	
The	active	game	dropdown	is	used	to	select	which	Deig	game	that	should	be	
active.	If	the	game	is	changed	you	should	press	"refresh"	in	the	Deig	assignment	
window	(Figure	2).	
	
There	are	two	"runtime	settings"	that	can	be	altered.	"Override	Skip"	will	make	it	
possible	to	skip	dialog	(by	pressing	the	space	bar	or	by	swiping)	even	if	it	is	the	
first	time	it	is	played.	The	"Use	prototyping	Assets"	can	be	unchecked	when	a	
game	is	ready	to	be	shipped	(and	all	elements	have	got	proper	prefabs).	This	will	
(slightly)	increase	the	performance.	Don't	forget	to	delete	the	folder	
"Deig/Resources/PrototypingAssets".	If	not,	it	will	be	included	in	the	build	and	
waste	space.	

Autoplay
The	autoplay	settings	are	used	 for	 testing.	By	checking	autoplay,	 the	game	will	
play	automatically	(simulating	the	dragging	of	a	finger).	The	player	is	very	stupid	
and	performs	random	choices.	
	

	
Figure	13.	The	autoplay	settings	scriptable	object	inspector.	

	

Audio
The	audio	settings	scriptable	object	associate	different	mixer	groups	etc.		

Speech Bubbles
The	 speech	 bubble	 scriptable	 object	 associate	 speech	 bubbles	 for	 different	
emotions	(and	inner	dialog	if	it	is	the	left	side).	
	

	
Figure	14.	The	speech	bubbles	settings	scriptable	object	inspector.	

	
It	is	possible	to	add	new	emotions	and	add	extend	the	speech	bubble	array.	

Savestates
A	Deig	game	saves	the	state	to	a	folder.	The	inspector	in	Figure	15	can	be	used	to	
erase	the	savefiles	or	to	print	the	location	of	savefiles.	

	
Figure	15.	The	inspector	for	savestate	(in	the	Deig	settings)	

	
It	is	possible	to	launch	the	game	from	a	specified	location	(Figure	16).	

	
Figure	16.	The	inspector	for	configuring	the	saved	state	(in	the	Deig	settings)	

	
The	 button	 at	 the	 top	 of	 Figure	 16	 ("Copy	 current	 state")	 loads	 the	 last	 saved	
state	to	the	settings.	When	"start	 from	here"	 is	pressed,	the	game	will	 instantly	
launch	 in	 this	 state	 (without	 loading	 the	menu	 chapter).	 It	 is	 also	 possible	 to	
select	a	chapter	and	 location	manually.	Boolean	variables	can	be	toggled	 in	 the	
inspector.	

Example of a fully implemented game
You	 can	 install	 the	DeigDemo-package	 to	 see	 an	 example	 of	 a	 "game"	 that	 has	
been	(almost)	fully	 implemented	in	Unity	with	animations	etc.	The	voice-acting	
is	not	present.	
	
	

	
Figure	17.	A	location	from	the	DeigDemo.	

Disclaimers
Note	 that	 the	 usage	 of	 animations,	 custom	 functions	 and	 variable	 subscribers	
may	 need	 additional	 testing	 to	 make	 sure	 the	 behavior	 is	 as	 expected.	 In	
particular	you	should	test	to	quit	the	game,	restart	and	continue	to	make	sure	the	
state	of	e.g.	the	animation	is	as	expected.	
	

Acknowledgments
The	following	persons	have	developed	the	content	in	this	package:	

Arslan	Tursic	-	2D	Art	
Henrik	Engström	-	Programming	
Linus	Nordgren	-	Programming	
Tobias	Karlsson	-	Animation	
Per	Anders	Östblad	-	Audio	&	music		

	
The	development	of	Frequency	Missing	and	Marvinter	has	been	funded	by	the		
The	Swedish	Post	and	Telecom	Authority,	Sveriges	Radio	and	the	University	of	
Skövde.	
	
The	package	can	be	used	freely	for	non-commercial	purposes.	
If	you	have	any	questions,	please	contact	henrik@deig.se.	
	
Visit	https://deig.se	for	more	information	and	to	download	the	Deig	editor.	
	
	

